Spectral monodromy of non-self-adjoint operators
نویسندگان
چکیده
منابع مشابه
Spectral monodromy of non selfadjoint operators
We propose to build in this paper a combinatorial invariant, called the ”spectral monodromy” from the spectrum of a single (non-selfadjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting selfadjoint h-pseudodifferential operators, given ...
متن کاملSpectral Properties of Random Non-self-adjoint Matrices and Operators
We describe some numerical experiments which determine the degree of spectral instability of medium size randomly generated matrices which are far from self-adjoint. The conclusion is that the eigenvalues are likely to be intrinsically uncomputable for similar matrices of a larger size. We also describe a stochastic family of bounded operators in infinite dimensions for almost all of which the ...
متن کاملNon-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملSpectral Theory for Compact Self-Adjoint Operators
This agrees with the definition of the spectrum in the matrix case, where the resolvent set comprises all complex numbers that are not eigenvalues. In terms of its spectrum, we will see that a compact operator behaves like a matrix, in the sense that its spectrum is the union of all of its eigenvalues and 0. We begin with the eigenspaces of a compact operator. We start with two lemmas that we w...
متن کاملSpectral Theorem for Self-adjoint Linear Operators
Let V be a finite-dimensional vector space, either real or complex, and equipped with an inner product 〈· , ·〉. Let A : V → V be a linear operator. Recall that the adjoint of A is the linear operator A : V → V characterized by 〈Av, w〉 = 〈v, Aw〉 ∀v, w ∈ V (0.1) A is called self-adjoint (or Hermitian) when A = A. Spectral Theorem. If A is self-adjoint then there is an orthonormal basis (o.n.b.) o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2014
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4855475